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Abstract

MRI is a well established imaging technique for in-vivo studies of human
musculoskeletal structures in biomechanics and orthopedic research. How-
ever, it is not ideally suited for a detailed motion analysis of soft tissue, as
MRI sequences are not yet capable of capturing 3D data with sufficiently
high spatio-temporal resolutions. Therefore, we propose a new registration
method based on B-spline transformations using rigid constraints at bones
implemented in the elastix software tool that combines the temporal in-
formation from dynamic MRI with the spatial information from a static HR
MRI scan of the same subject. Good registrations were obtained from two
datasets. The generated HR dynamic MRI of the knee shows realistic trans-
formations of bones and soft tissues. Dice overlap above 90% and ∼ 85%
at bone and fat pad in most postures; and surface distances at bones below
1mm and fat pad ∼ 1mm were obtained. Tissue deformation were evaluated
using the Jacobian determinant. Such HR in-vivo dynamic analysis could
pave the way for a better understanding of dynamic behaviour of soft tis-
sue structures, including muscles, tendons, ligaments and menisci in healthy,
injured or diseased joints.

1. Introduction

Knee motion analysis is an important tool in biomechanics and orthope-
dic research. It is commonly used to study osteoarthritis [1, 2], patellofemoral
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pain [3] and knee injuries [4]. In addition, it is also used in follow-up treat-
ments such as meniscectomy [5] and arthroplasty [6]. Visualization and quan-
tification of knee joint dynamics are therefore essential for disease diagnosing
as well as treatment monitoring and assessment, especially in early phases of
the disease when joint tissue deformations are still not well manifested [7].

The methods used for knee motion analysis were initially highly invasive,
involving the insertion of probes into patient’s legs [8, 9, 10]. Today, generally
less invasive imaging techniques, such as radiography [11], fluoroscopy [12],
computed tomography [13] up to non-invasive magnetic resonance imaging
(MRI) [14, 15, 16, 17, 18, 19, 20] are used to visualize the motion of the
knee. MRI, in particular, is the only truly non-invasive imaging method
and offers excellent soft tissue contrast that can be controlled by various
dedicated acquisition sequences. However, due to its long acquisition times
and high susceptibility towards motion artifacts, it can typically only acquire
single static images at relatively high spatial resolutions or a series of dynamic
images with much lower spatial resolution [15]. Although there are some MRI
sequences that could provide both high temporal and spatial resolutions (e.g.
CINE-MRI), many repeated moving cycles of the knee (> 30) are required to
get high quality dynamic images [21], which again increases the acquisition
time and may also be a limiting factor for patients that are experiencing pain
during movement.

In contrast to CINE-MRI, real-time dynamic MR images can be acquired
using a single motion cycle. However, in real-time dynamic MRI a compro-
mise between temporal and spatial resolutions is often required, resulting in
images that suffer from streaking artifacts and motion blur [21], substan-
tially limiting the possibility of using real-time dynamic MRI for studying
soft tissue structures in motion, such as cartilage, tendons, and ligaments.

To overcome the compromises in image resolution, multiple studies [22,
23, 24, 25] tried approximating real-time dynamic MRI measurements with
a series of static MRI scans in different positions. However, such step-wise
measurements do not provide sufficient information on joint position and ori-
entation, and therefore cannot be considered a realistic dynamic analysis [26].
Furthermore, the visco-elastic nature of soft tissues could lead to deviations
in tissue thickness during dynamic movement which are not properly cap-
tured by using static images [7].

In order to perform an accurate dynamic analysis using images of higher
resolution and better quality, some researchers combined the information
obtained from a low-resolution (LR) dynamic 3D MRI data with a high-
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resolution (HR) static 3D MRI pre-scan of the same subject [27, 28, 20, 29,
30]. For instance, Boritikar et al. [27] and Clarke et al. [28] integrated the
anatomical structures visible in the HR static MRI into the dynamic MRI of
the knee and ankle joints respectively. They first obtained detailed 3D models
of the bones from the static HR pre-scan, which they then rigidly registered
to each time frame of the dynamic LR image series using an iterative closest
point algorithm. In both works only the rigid movement of the bones was
analysed. Any assessment of soft tissue structures, such as cartilage that
is relevant for the diagnosis of osteoarthritis [7], was not included in these
studies. Makki et al. [20] expanded the idea of rigid registration with a log-
euclidean polyaffine framework (LEPF) [31, 32] to study the movement of the
ankle joint. In LEPF, the rigid registration step is followed by a log-euclidean
weighting function, which fuses the local rigid transformations of the bones
into a continuous deformation field at each time point. The downside of
LEPF is that the weighting function of rigid transformations is only based
on the distance to the bones and it does not take into account soft tissue
information available in the dynamic MRI data.

Recently, several deep learning methods have also been proposed with
the intention to overcome the spatio-temporal limitations of the dynamic
MRI. Sarasaen et al. [29] took publicly available static HR MR images of the
abdomen, spatially down-sampled them to obtain respective LR versions,
and trained a U-Net [33] on the HR-LR image pairs in order to predict the
original HR data from the LR images. The U-Net was later fine-tuned on a
per-patient basis by using a static image from the respective patient. This
per-patient trained U-Net was then used to reconstruct dynamic HR MR
images. A similar approach was proposed by Chatterjee et al. [30], who aimed
to incorporate the temporal information of the dynamic sequence by using a
dual-channel U-Net, where one channel inputs the current time frame and the
other one the reconstructed HR image from the previous time frame. Training
was performed on static image data of a public database, while the dynamic
images were artificially created by applying random elastic transformations.
Although both methods show good reconstruction of dynamic MRI data and
were also able to consider the deformation of soft tissues, static and dynamic
images were obtained using the same MRI protocol, which is not often the
case in a clinical setting. In addition, there is no direct way, opposite to the
image registration approaches, to track the movement of individual voxels
by using these deep learning based methods, which is necessary for strain
analysis in soft tissues.
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In this work, we propose a new method for in-vivo assessment of defor-
mations in soft tissue structures of a knee in motion using dynamic MRI.
Our method combines the temporal information from LR dynamic 3D MRI
data acquired using a custom-made knee motion device [34] with the spatial
information from HR static 3D MRI pre-scans of the same subject by using
an image registration approach which combines rigid and non-rigid B-spline
transformations using the Elastix registration framework [35]. By doing so,
we aim to obtain realistic translations and rotations of rigid bones but also
realistic deformations of the surrounding non-rigid soft tissues. Our method
is capable of reconstructing an HR dynamic dataset by sequentially trans-
forming the HR static reference image to match the series of LR dynamic
images. Furthermore, it is also capable of mapping HR functional informa-
tion, such as T2 relaxation times into the dynamic sequence, which has been
proven to be useful for disease diagnosis [7]. We applied our registration
method on 4 dynamic MRI datasets. We finally show that the tracking of
voxel displacements, which results from image registration, can be directly
applied to strain analysis of soft tissues. This is in contrast to deep learning
based reconstructions that would require additional post-processing meth-
ods such as optical flow after the reconstruction of the HR dynamic image
sequence. In comparison to other methods, our method also considers non-
rigid voxel displacements of soft tissues, provides a basis for strain analysis
in soft tissue, and is not constrained by requiring the same MRI protocol for
both static and dynamic image acquisition.

2. Materials and Methods

The study was approved by the local ethics committee with all volunteers
providing written consent prior to their participation in the experiments.
The measurement of all subjects involved in this project is carried out in
accordance with the Helsinki Declaration of June 1964 (“Ethical Principles
for Medical Research Involving Human Subjects”). Data was collected and
stored by Charité Universitätsmedizin Berlin and the Universitätsklinikum
Jena. Eleven subjects participated in this study, where each individual was
scanned at multiple time points (up to 5).

2.1. Static and Dynamic MRI Data Acquisition

Static and dynamic data acquisition was performed with a 3T whole-
body MRI scanner (Magnetom Prisma Fit, Siemens Healthineers) using two
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multipurpose flexible receiver coils (Variety, NORAS MRI products GmbH).
A real-time 3D ultra-short echo-time (UTE) MRI sequence with a radial
center-out sampling scheme was used [36]. Besides enabling direct imaging
of tissues with short T ∗

2 relaxation times such as tendons and ligaments [37],
the sequence is highly robust against motion artifacts [38, 39]. Most multi-
echo static images of the knee were acquired in a sagittal direction with
∼300 slices reconstructed to a matrix size of ∼400×300, in-plane resolution of
∼1×1mm2, slice thickness of ∼1mm, using three TE between 30 and 9,840µs,
TR ∼ 4000µs, and FA ∼ 10◦. Similarly, ∼30 different postures single echo
dynamic images were acquired in most subjects in a sagittal direction with
50 − 160 slices reconstructed to a matrix size between 160 to 432 × 57 to
210, in-plane resolution of ∼2×2mm2, slice thickness of ∼4mm, TE ∼50µs,
TR ∼ 1300µs, and FA ∼ 5◦.

To guide the knees of the volunteers during dynamic MRI acquisitions, a
custom-made knee motion device was used. The device, as shown in Fig. 1, is
made out of MRI-compatible materials and is designed to be placed within
the bore of the MRI scanner. The aim of the device is to hold the pa-
tient’s leg and to prevent motions orthogonal to the plane of normal knee
movement, therefore minimizing the undesired out-of-plane motion of the
knee joint [34]. The device also allows for both active (participant-driven)
and passive (motor-driven) continuous knee motions, as well as for static
acquisitions in different locked positions, ranging from full extension to ap-
proximately 40◦ of flexion in the sagittal plane.

Figure 1: 3D rendering and photograph [34] of the knee motion device which allows active
(participant-driven) and passive (motor-driven) motions with/without weight, synchroniz-
ing the knee angle with the MRI data.

From the eleven subjects that participated in the study, only two had
visits with both static HR and dynamic LR MRI images: subject ID 1 at
visit 4, and subject ID 7 at visit 1. Dynamic analysis without static to
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dynamic image registration would be possible on subjects IDs: 3 (visits 3
and 4), 4 (visit 2), and 11 (visit 1). Images of those cases are shown in
Table 1.

2.2. Image Registration Framework

The main idea behind our proposed method is to spatially align the mus-
culoskeletal structures of the knee from the HR images to each time frame
of the LR dynamic image series. This approach enables us to combine the
spatial image information available in the high-resolution data with the tem-
poral information of dynamic data, and therefore allowing us to describe in
detail the motion of soft and rigid tissues from dynamic imaging.

Briefly, image registration is a process of aligning the space of the moving
image IM : ΩM ⊂ R3 → R to the space of the fixed image IF : ΩF ⊂
R3 → R by finding a transformation T : ΩF → ΩM that maps each point
of the fixed image space to its corresponding location in the space of the
moving image. A transformation T could be rigid such that ΩF could be
translated, rotated, or scaled; or non-rigid where each point x ∈ ΩF can move
freely. Often, non-rigid transformations are modeled by B-splines [40], where
the transformation is represented by a smooth deformation field based on a
grid of control points. Finally, the transformation parameters are found by
maximizing a suitable similarity measure Sm(IF , IM(T (ΩF ))) ∈ R between
the transformed moving image and the fixed image.

In this work, the registrations are done using the elastix software tool
which is widely used in the context of medical image registration [35]. elastix
is a command line program, where given the fixed image and moving image
files represented by fixedImage and movingImage, the most basic command
to run a registration is as follows: elastix -f fixedImage -m movingIm-

age -out outputDirectory -p parameterFile.txt, where the output fol-
der is given by outputDirectory and parameterFile.txt is a text file con-
taining all registration parameter settings such as the transformation type
and the kind of similarity measure.

Our registration approach consists of two parts: first, the registration
between consecutive images in the LR dynamic MRI; and second, the reg-
istration between the HR static MRI and the most similar images in the
dynamic series. Then using the obtained transformations, the static images
and its segmentations can be propagated forward and backwards in time.
This approach is described in Figure 2.
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Figure 2: Proposed registration method. Consecutive images in the dynamic series (top)
are registered to obtain a transformation (T i+1

i ) and its inverse (T i
i+1). Static HR images

(bottom) in flexed (flex.) and extended (ext.) positions are registered to the most sim-
ilar images in the dynamic series, then these static images and its segmentations can be
propagated forward and backwards in time.

2.2.1. Dynamic MRI Registration

Given a dynamic MRI series composed of n+1 images: Idyn.i : Ωdyn. ⊂
R3 → R where i = [0, ..., n], for the registration between consecutive images
Idyn.i and Idyn.i+1 , such that Idyn.i+1 is the fixed image and Idyn.i the moving image,

we try to find a transformation T i+1
i that aligns image Idyn.i to image Idyn.i+1 .

As between consecutive images a small rotation of the tibia bone and small
non-rigid deformations of soft tissues are expected, we use non-rigid B-splines
transformation, represented in the elastix parameter file by: (Transform

"BSplineTransform"). For the grid control point resolution we searched for
a good trade-off between a low computation time plus memory consumption,
and a small grid spacing; after trying several grid resolutions (1x, 2x, 3x,...
image resolution) we observed a good trade-off in a three voxels grid space
represented in the parameter file by: (FinalGridSpacingInVoxels 3).
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Table 1: Description of available dynamic knee MRI. Postures 1, 5 10, 15, and 20 are
shown. A static image is also shown above the dynamic sequence if available. Acquisition
parameters are also described: size (x, y, z dimensions, No. postures), resolution, TE, TR,
and FA. Note: the dynamic images in subject 1 were acquired in coronal direction but are
visualized in sagittal view.

ID Visit MRI images Parameters

1 v4

480 × 400 × 288
0.83 × 0.83 × 1.25mm
{30, 2430}µs
5000µs
8◦

192 × 57 × 160 × 24
2.08 × 2.08 × 4.44mm
30µs
1300µs
4◦

3
v3

336 × 210 × 152 × 50
1.56 × 1.56 × 1.56mm
55µs
1700µs
5◦

v4

336 × 210 × 152 × 30
1.42 × 1.42 × 1.42mm
{55, 2415}µs
4200µs
5◦

4 v2

432 × 196 × 270 × 33
1.18 × 1.18 × 1.18mm
55µs
2000µs
5◦

7 v1

416 × 378 × 277 × 2
0.86 × 0.86 × 0.86mm
{100, 2480, 4860}µs
7300µs
10◦

160 × 100 × 50 × 22
2.25 × 2.25 × 4.5mm
70µs
1000µs
5◦

11 v1

192 × 160 × 57 × 25
2.0 × 2.0 × 4.1mm
30µs
1300µs
4◦
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A finer grid could result in better registration of small non-rigid structures
such as the fat pat, but it could also lead to more irregular deformations [35].
Therefore, to get smooth deformations we use a hierarchical approach in the
grid resolution. Three resolutions are used, starting by 4 times the in-plane
final grid resolution, halving for the subsequent resolutions until the final
grid spacing of 3 voxels is reached. As the image between-planes resolution
is already quite low (∼4mm), the z-dimension of the grid is not affected
by the multi-resolution approach. In the parameter file this is defined by:
(GridSpacingSchedule 4 4 1 2 2 1 1 1 1). The rest of parameters are
the same as suggested by elastix for B-splines registration.

However, by only using B-splines transformation for the registration be-
tween consecutive images does not guarantee the bones being rigidly regis-
tered. Therefore, we want T i+1

i to be rigid inside bones and non-rigid in
soft tissues. In [41], a voxel distance preserving penalty inside rigid regions
is presented. The idea is that inside rigid regions the distance between any
two voxels should be preserved after an image is transformed by penalizing
the differences. Given a rigid region inside image Idyn.i (ΩRi

⊂ Ωdyn.) and a
rigidity penalization (Pm : R3 × R3 → R), then finding the transformation
T i+1

i is given by:

arg min
T i+1

i

(
−Sm

(
Idyn.i+1 , I

dyn.
i (T i+1

i (Ωdyn.))
)
+ λPm

(
ΩRi

,T i+1
i (ΩRi

)
))

,

where λ weights the contribution of the rigidity penalization in the optimiza-
tion process. In the elastix parameter file parameterFile.txt we specify
the two metrics (Sm and Pm) by: (Metric "AdvancedNormalizedCorrela-

tion" "DistancePreservingRigidityPenalty"). Normalized correlation
is suitable for registering images with similar intensities [35] such as the reg-
istration of consecutive images in a dynamic sequence. As suggested by [41],
we set λ = 0.01 by (Metric0Weight 1.0) and (Metric1Weight 0.01). The
rigid region ΩRi

is given by: (SegmentedImageName "RigidFileI"), where
RigidFileI is the bones segmentation file at posture i where each bone
(tibia and femur) are assigned a different label (integer values 1, 2, and 0 for
background). Finally, the rigid region spacing in x-y-z dimensions is repre-
sented by (PenaltyGridSpacingInVoxels 1 1 1) (see Appendix 6.1 for a
full description of the parameter file).

To get bones segmentations at each posture, the bones segmentation at
posture 0 (Sdyn.

0 : Ωdyn. → Z) is rigidly register to each posture. To do
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this, Sdyn.
0 is first propagated to each posture i + 1 to get an approximation

of the bones segmentation (Sdyn.
i+1 ). This is done by applying the obtained

transformation T i+1
i as: Sdyn.

i+1 = Sdyn.
i

(
T i+1

i (Ωdyn.)
)
. In elastix this is

implemented as: transformix -in LabelI J -out outputDirectoryI+1

-tp outputDirectoryI+1/TransformParameters.0.txt, where LabelI -

J is the image file name for each label J in Sdyn.
i , and outputDirecto-

ryI+1/TransformParameters.0.txt the file containing T i+1
i . Then as sec-

ond step, the rigid bones at each posture are obtained by rigidly register Sdyn.
0

to each posture i. This is done by rigidly register each bone in Sdyn.
0 to each

approximation of the bone segmentation in Sdyn.
i , where the rigid transfor-

mation is defined by Euler rigid transform which only allows for rotation and
translation. In the elastix parameter file this is defined by: (Transform

"EulerTransform") (a full description of the rigid registration parameter
file is shown in Appendix 6.2).

Further, as the dynamic images could be noisy and contain moving arti-
facts outside the knee region which could lead to registration errors, to ob-
tain T i+1

i we perform the registration only inside a Region of Interest (ROI)
around the knee, which is represented by a bounding box to fit the propa-
gated segmented bones at posture i and then slightly dilated by few voxels to
cover possible tissues deformations after registration outside the non-dilated
region. In elastix this kind of registration is supported by masks.

The computation of T i+1
i allows a forward propagation of the static

images and segmentations, however as shown in Figure 2 backward prop-
agation may be also needed. Backward transformations can be obtained
by computing the inverse of T i+1

i by: T i
i+1 = Inverse(T i+1

i ). This is

computed by first transforming the image (Idyn.i

(
T i+1

i (Ωdyn.)
)
) and using

it as moving image with the fixed image being Idyn.i . In elastix this is
done as: elastix -f DynIFile -m DynIFile -out outputDirectoryI+1

-t0 outputDirectoryI+1/TransformParameters.0.txt -p parameterFi

le.txt, where DynIFile is Idyn.i image file, and parameterFile.txt is the
same file used to get T i+1

i but the similarity metric is changed to penalize
voxel distances by using (Metric "DisplacementMagnitudePenalty").

2.2.2. Static to Dynamic MRI Registration

Static images Istat.j : Ωstat. ⊂ R3 → R where j = {flex., ext.} for flexed
and extended positions, are register to the most similar images in the dynamic
series Idyn.i , as better registration should be expected between similar images.
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To find the most similar images, bones segmentations for each static image
are registered to the propagated segmented bones on each posture i. For this,
we use a translation only transformation: (Transform "TranslationTrans-

form"), as the aim of these registrations is to check how similar the static
and dynamic postures are, instead of getting good alignments after registra-
tion. Therfore, each static image segmentation j is translated to all dynamic
postures, where the most similar posture is the one with the maximum dice
overlap between bones. Then the next step is to get accurate registration be-
tween the static images to its most similar dynamic sequence postures. As a
composition of rigid and non-rigid deformations could be necessary to register
a static to a dynamic image, we first apply an affine registration which allows
rigid transformations plus image zooming, followed by a B-spline transform.
Also, as the images contrast are very different between static and dynamic im-
ages due to differences in acquisition parameters, and properties such as reso-
lution and sizes, this makes the registration by using the intensity information
only very challenging. Then instead of performing an intensity-based regis-
tration, we register the segmentations of soft and bone tissues which is less
challenging to register and better quality registrations would be expected. In
elastix the registration between static and dynamic segmentations is imple-
mented as: elastix -f SegDynK -m SegStatJ -out outputDirectory -

p ParFileAffine.txt -p ParFileBSpline.txt, where SegStatJ and Seg-
DynK are the segmentation image files (tibia, femur, fat pad, and background
assigned a different integer value between 0 and 3) for the static image j and
for posture k in the dynamic image, with postures k = {k1, k2} ∈ Z being the
most similar to each static image j; and ParFileAffine.txt and ParFileB-

Spline.txt the parameter files for affine and B-spline registrations. These
registrations results in the transformations from the static images j to the
dynamic image k: T k

{flex.,ext.} : Ωdyn. → Ωstat..
Each static images j, its segmentations and T2 maps can be transformed

to postures k by applying the obtained transformation T k
{flex.,ext.}. T2 maps of

the static images are obtained by fitting the signal equation to the multi-echo
intensity values. Given the MRI signal S defined as: S = Ke−TE/T2, where
K is a constant value, by computing log(S) the T2 maps can be obtained by
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solving the following linear system of equations:

1 0 · · · 0 TE1 0 · · · 0
...

...
. . .

...
...

...
. . .

...
1 0 · · · 0 TEM 0 · · · 0
...

. . . . . .
...

...
. . . . . .

...
0 · · · 0 1 0 · · · 0 TE1
...

. . .
...

...
...

. . .
...

...
0 · · · 0 1 0 · · · 0 TEM





log(K1)
...

log(KN)
−1/T21

...
−1/T2N


=



log(S1,TE1)
...

log(S1,TEM
)

...
log(SN,TE1)

...
log(SN,TEM

)


,

where {TE1, ..., TEM} are the available M echo times, N the total number of
voxels, {K1, ..., KN} the constant valuesK for each voxel, {S1,TE1 , ..., SN,TEM

}
the signal values S per voxel per echo time, and {T21, ..., T2N} the T2 value
per voxel in the static images. Implementing the above matrices as spare ar-
rays save memory space and speed up computation by using a least-squares
regression algorithm to solve the system of equations.

The transformation of the static images, segmentation, and T2 maps
are done with transformix. However as the inputs of each transformation
T k
{flex.,ext.} is defined in the dynamic image spaceΩdyn., the transformation file

generated by the elastix command needs to be edited such as the resolution
is the same as in Ωstat.. The resolution of Ωstat. in the x-y-z dimension
is given by (dxstat., dystat., dzstat.)mm, and the size of the dynamic images
represented by (Dxdyn., Dydyn., Dzdyn.)mm, then in the transformation files
the input spacing is redefined to the new resolution by: (Spacing dxstat.

dystat. dzstat.), and the new image size in voxels by: (Size Dxdyn./dxstat.

Dydyn./dystat. Dzdyn./dzstat.), rounding the ratios to the closest integers. This
is also assuming that the origins and orientations of both Ωdyn. and Ωstat.

are the same.
The transformed HR images are now propagated to the other postures

using the transformations between postures T i+1
i in case of forward trans-

formation, T i
i+1 if backward. Again these transformations are implemented

by transformix and the transformation files should be edited as before to
have the resolution of the static images. Finally, in case of multiple-static
postures, as described in Figure 2, to get the HR images between the pos-
tures k1 and k2, k1 posture should be forwardly propagated half number of
postures while k2 backwardly propagated.

12



3. Results

To execute the method, in the static HR MRI images and posture 0
in the dynamic MRI, fat pad, femur and tibia bones were manually seg-
mented by a medical imaging researcher (ML) using the medical imaging
tool Amira. The two closest dynamic images (k1, k2) to the static are also
manually segmented. To evaluate the quality of the registration results, we
compare the propagation of the static segmentations in the dynamic MRI
sequence to manual annotations done on each posture in the LR sequence by
two observers (ML (Obs.1), AA (Obs.2)). Comparisons were done using dice
overlapping (DSC) and median surface distances. Additionally, we evaluate
tissue deformations on the reconstructed HR dynamic MRI by using the Ja-
cobian determinant |J(x)| = |[∇T x(x),∇T y(x),∇T z(x)]

T |, where each row
of J at voxel x is the gradient of the transformation T on each dimension x, y,
z. An interesting property of the determinant of J is that it is equivalent to a
volume change ratio at each point x (|J(x)| ≡ V olume(T (x))/V olume(x)),
therefore if |J(x)| = 1 the volume at x after the transformation T (x) is
preserved such as in rigid deformations, if |J(x)| < 1 there was compression,
and if |J(x)| > 1 a volume expansion. As T i+1

i maps each point from the
fixed to the moving image, then to get the volume deformation from the
moving to fixed image the inverse of the Jacobian determinant is used in-
stead as: |J(T i+1

i (Ωdyn.)|−1. The Jacobian determinant of T i+1
i is computed

in elastix by applying the command transformix -jac all in the HR
edited file of T i+1

i .
Registration results for subject 7 are shown in Figure 3. HR dynamic

sequences are obtained for each echo time image, T2 maps, and Jacobians.
The segmentations done in the static HR images are also propagated in the
HR dynamic sequence. Registered images and segmentations look realistic
with bones conserving their shape across the sequence, and fat pad com-
pressing and stretching. Good contrast of different tissues are observed in
the T2 maps even better than the different echo time images, for instance
tendons are clearly visible. The inverse of Jacobian determinant (|J|−1) is
∼ 1 at bones suggesting rigid deformations, while most voxels in fat pad < 1
suggesting volume compression. Quantifications of the registration quality
are described in Figure 4. The static segmentations are propagated to each
posture in LR and compared to each observer by DSC and surface distance.
DSC and distances for tibia and fat pad between registered segmentations
and Obs.1 are comparable (p > 0.01 Wilcoxon test) to between observers.
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Figure 3: Registration results on Subject 7. Static HR images (row 1) and its segmenta-
tions (green contour: femur, red: tibia, blue: fat pad) are registered to the LR dynamic
sequence (row 2), resulting in a HR dynamic sequence for each echo time (0.1, 2.48, and
4.86ms) (rows 3-5) with its registered segmentations. HR T ∗

2 maps (row 6) and inverse
Jacobian determinant of T i+1

i (row 7) are also shown.
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Figure 4: Quantification of registration performance. Top: DSC and surface distances
per posture between the registered static segmentations and manual annotations done by
two observers, and the DSC and distances between observers. Bottom (left and center):
Box plots of DSC and surface distances where each box contains all posture measurements.
Median values are compared to the inter-observer medians by Wilcoxon test. Bottom right:
Box plot of the inverse of Jacobian determinant values per posture per tissue annotated
by Obs.1 (whiskers not show to improve visualization).

It is also observed a decay in registration performance in the middle postures
due error propagation, while the highest performances are generally observed
at the postures closest to the static images (postures 1 and 21). For most
postures the distances between registered segmentations and Obs.1 are much
below the dynamic image resolution (2.25 × 2.25 × 4.5mm). The inverse of
the Jacobian determinant voxel values per tissue annotated by Obs.1 for each
posture are also shown in Figure 4. As expected bone values are ∼ 1, while
most values in the fat pat are < 1, although a small shift is also observed in
the latest posture which could be due to the error propagation.
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4. Discussion

In this work, we present a method to get a dynamic HR MRI sequence
of the knee movement which could be used to analyse the deformations and
strain analysis of soft tissues. To do this, we developed a registration method
based on the software tool elastix. The method registers HR static images
with a real time LR dynamic sequence obtained with customized motion de-
vice, allowing to merge the HR spatial information from the static images
with the temporal information of the dynamic sequence. The registration
results in a series of transformations that could be used to get a HR MRI
sequence but also to get HR dynamic parameter maps such as T2 and Ja-
cobian determinant maps. These transformations can be also used to track
the deformations of tissues segmented in the HR static images. For instance
in the static images and HR T2 maps, tissues such as fat pad, and tendons
are much better visualized than in the LR MRI, then deformations of these
tissues could be better analyzed by using the registrations.

The method generated high quality registrations. The presented non-
rigid registration approach including rigid constraints at bones permitted
to get realistic deformations with rigid transformations in the bones, and
non-rigid deformations in soft tissues, which were observed in the registered
HR images and validated using the Jacobian determinant. We evaluated
the registrations quality by comparing the transformed HR static segmenta-
tion to manual segmentations done in the dynamic sequence. Good results
were obtained with dice overlap above 90% at bone, and ∼ 85% in fat pad
in most postures. Surface distances at bones were below 1mm and fat pad
∼ 1mm much shorter than the LR image resolution. Both dices and surface
distances for tibia and fat pad were comparable to the inter-observer vari-
ability, demonstrating the propagated segmentation being as good as manual
observers. However, we observed that better comparisons were obtained with
respect to the annotations from Obs.1 than with Obs.2. This could be due to
the segmentations inputs in the registration approach were done by Obs.1 bi-
asing the transformed segmentations to that observer. It is also observed that
the registered femur is not being comparable to the inter-observer variability.
A possible reason the femur being over-segmented in the static images. The
intensity non-uniformity common in 3T MRI, which is more noticeable at the
borders of the image which is located part of the femur can make the manual
annotations a challenging task. Further, we also observed that there is a
decay in registration quality after applying several transformations due to
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error propagation. A source of error could be due to the image interpolation
after applying a transformation to get the registered image. A succession
of this sequence of transformation then interpolation can lead to the propa-
gation of the interpolation errors. To prevent this, composing the series of
transformations without intermediate image interpolations could contribute
to decrease the error propagation, however in our experiments this did not
work. A possible reason could be numerical problems by composing a se-
quence of highly complex B-spline transformations. In this work, to reduce
the error propagation we incorporated several static HR images at different
postures in the registration approach.

To analyze the deformations of soft tissue in the HR sequence, we used
the Jacobian determinant. By using this we observed compression of most
part of the fat pad during flexed to extended movement in a healthy subject.
We believe this registration approach could be used to compare Jacobian
determinant distributions at different soft tissues between healthy and dis-
eased population during dynamic movement to identify possible bio-markers
of early knee disease. Similar could be done with T2 distributions values
in soft tissues, which has been shown in the past to be relevant in knee
diseases [7]. Other approaches could be done to analyse the deformations.
For instance, getting shape representations of soft tissues, and then finding
possible correlations in shape dynamics to disease.

There have been other similar methods in the past based on image regis-
tration to obtain a HR dynamic MRI sequence. Boritikar et al. [27] reported
errors below to 1mm for the patella and femur bones, and Clarke et al. [28] re-
ported a difference of 1.5mm between physical and MRI measurements of mo-
ment arms of the ankle angle. Makki et al. [20] reported dices above 90% for
several ankle bones without a noticeable decay after postures. The reported
errors of Boritikar et al. [27] and Makki et al. [20] are similar to the reported
in this work for the knee joint bones, however in the presented method and
evaluation soft tissues of the knee were considered. Methods based on deep
learning have been also presented [29, 30], although the presented dynamic
HR results were good, static and dynamic images were considered from the
same MRI protocol which was not the case with our data and often not the
case in clinical settings. Another problem with deep learning based methods
is that they do not output transformations or deformations fields that could
be used to track the movement of individual voxels which is necessary for
dynamic analysis in soft tissues.

A drawback in the presented method is the need to segment maximum
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three postures of the dynamic MRI images, and the segmentation of all static
images. Manual segmentations could introduce errors as observed for the
femur due to the intensity bias, but also time consuming. We tried a fully
automatic registration approach without getting good results due to the big
differences between static and dynamic images. Also the segmentation of
bones in the first posture was necessary to apply the rigid constraints in
the dynamic registration. In the future, automatic segmentation approaches
such as the NN-UNet [42] which has been shown to be very successful in
segmentation tasks could be used to segment the knee bones in the dynamic
and static MRI, skipping the need of manual segmentations.

In summary, the presented method was successful to get good quality
HR dynamic MRI of the knee joint, also it could be used to get HR dynamic
parametric maps such as T2 and Jacobian determinant, and finally, this
approach can be used to analyse soft tissue deformations. Such HR in-vivo
dynamic analysis could pave the way for a better understanding of dynamic
behaviour of soft tissue structures, including muscles, tendons, ligaments and
menisci in healthy, injured or diseased joints.
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6. Appendix

6.1. B-spline with rigid penalty transform parameter file

(FixedInternalImagePixelType ”float”)
(MovingInternalImagePixelType ”float”)
(UseDirectionCosines ”true”)
// **************** Main Components **************************
(Registration ”MultiMetricMultiResolutionRegistration”)
(Interpolator ”BSplineInterpolator”)
(ResampleInterpolator ”FinalBSplineInterpolator”)
(Resampler ”DefaultResampler”)
(FixedImagePyramid ”FixedSmoothingImagePyramid”)
(MovingImagePyramid ”MovingSmoothingImagePyramid”)
(Optimizer ”AdaptiveStochasticGradientDescent”)
(Transform ”BSplineTransform”)
(Metric0Weight 1.0)
(Metric1Weight 0.01)
(Metric ”AdvancedNormalizedCorrelation” ”DistancePreservingRigidityPenalty”)
(SegmentedImageName ”RigidFileI”)
(PenaltyGridSpacingInVoxels 1 1 1)
// ***************** Transformation **************************
(FinalGridSpacingInVoxels 3)
(HowToCombineTransforms ”Compose”)
(AutomaticTransformInitialization ”false”)
// ******************* Similarity measure *********************
(ErodeMask ”false”)
// ******************** Multiresolution **********************
(NumberOfResolutions 3)
(GridSpacingSchedule 4 4 1 2 2 1 1 1 1)
// ******************* Optimizer ****************************
(MaximumNumberOfIterations 2048)
(MaximumStepLength 0.01)
// **************** Image sampling **********************
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(NewSamplesEveryIteration ”true”)
(ImageSampler ”RandomCoordinate”)
// ************* Interpolation and Resampling ****************
(BSplineInterpolationOrder 1)
(FinalBSplineInterpolationOrder 3)
(DefaultPixelValue 0)
(WriteResultImage ”true”)
(ResultImagePixelType ”float”)
(ResultImageFormat ”nii”)

6.2. Euler transform parameter file

(FixedInternalImagePixelType ”float”)
(MovingInternalImagePixelType ”float”)
(UseDirectionCosines ”true”)
// **************** Main Components **************************
(Registration ”MultiResolutionRegistration”)
(Interpolator ”BSplineInterpolator”)
(ResampleInterpolator ”FinalBSplineInterpolator”)
(Resampler ”DefaultResampler”)
(FixedImagePyramid ”FixedRecursiveImagePyramid”)
(MovingImagePyramid ”MovingRecursiveImagePyramid”)
(Optimizer ”AdaptiveStochasticGradientDescent”)
(Transform ”EulerTransform”)
(Metric ”AdvancedMattesMutualInformation”)
// ***************** Transformation **************************
(AutomaticScalesEstimation ”true”)
(AutomaticTransformInitialization ”true”)
(HowToCombineTransforms ”Compose”)
// ******************* Similarity measure *********************
(NumberOfHistogramBins 32)
(ErodeMask ”false”)
// ******************** Multiresolution **********************
(NumberOfResolutions 4)
// ******************* Optimizer ****************************
(MaximumNumberOfIterations 250)
// **************** Image sampling **********************
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(NumberOfSpatialSamples 2048)
(NewSamplesEveryIteration ”true”)
(ImageSampler ”Random”)
// ************* Interpolation and Resampling ****************
(BSplineInterpolationOrder 1)
(FinalBSplineInterpolationOrder 0)
(DefaultPixelValue 0)
(WriteResultImage ”true”)
(ResultImagePixelType ”float”)
(ResultImageFormat ”nii”)
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